

To join by video and audio use: (b) (6)

To join by audio only use: (b) (6)

Meeting ID: (b) (6) January 30, 2020

ED_004715A_00033022-00001

Presentation Outline

- Site Water Quality Overview
 - Baseline water quality data overview
 - Site Loads analysis
- Proposed Early Actions
 - Hennessy Creek Diversion
 - Diversion around Meadow Creek Mill and Smelter Complex
 - DMEA Adit and Dump Diversion
- Discussion

Baseline water quality summary

- CERCLA and NEPA compliant data QA/QC
- 32 perennial stream surface water monitoring locations
- 23 surface water seeps, adit seeps and other mining features
- 19 alluvial monitoring wells
- 12 bedrock monitoring wells
- 2012-current, monthly or quarterly monitoring data
- 41 monthly constituents and 68 quarterly constituents including metals/metalloids, anions, cations, and field parameters
- Additional sample locations added periodically

Site Map showing surface and ground water monitoring locations

Baseline water quality summary

- Arsenic and antimony are key COIs
- Meadow Creek and Bradley Pit reach are significant sources of arsenic and antimony
- Arsenic and antimony concentrations generally show inverse relationship with discharge

EFSFSR below Sugar Creek (YP-SR-2)

 WQ data from non mining impacted areas show elevated metal concentrations

2015 USGS Stibnite Water Quality Study

Annual mean arsenic concentration (lbs/yr) (USGS)

COIs at downstream monitoring location YP-SR-2 (BC 2017)

Surface water dissolved arsenic load distribution

- Flow estimates used for each sampling location to calculate constituent loads
- 2014 data generally representative and captures peak runoff
- Percentage loads calculated relative to farthest downstream monitoring location YP-SR-2
- Data used in early action selection process

May 2014 – Peak runoff

Aug 2014 – baseflow conditions

Meadow Creek Valley Surface Water Impacts

Arsenic loads as percentage of total arsenic (d) at YP-SR-2 during low and high flow

- SODA & Bradley Tailings 11 to 27%
- Surficial Seeps 0.9% to 0.2%
- Blowout Creek 1-2%
- Diffuse groundwater 3-6%

Panoramic View of Meadow Creek Valley looking west

Meadow Creek Dissolved Arsenic Loads kg/day May

2014

East Fork South Fork above YP Pit Surface Water Impacts

Arsenic loads as percentage of total arsenic (d) at YP-SR-2 during low and high flow

- Upper EFSF 3 to 4%
- Meadow Creek 16 to 36%
- Tributaries 0.3 to 1.5%
- DMEA adit and dump 0.1 to 0.5%
- Inflows adjacent to EF Dumps 6-21%

ED_004715A_00033022-00009

East Fork South Fork through YP Pit Surface Water Impacts

Arsenic loads as percentage of total arsenic (d) at YP-SR-2 during low and high flow

- Cinnabar Tunnel 0.3 to 0.4%
- Midnight Creek 2 to 2.5%
- Inflows through reach including pit and dumps 24 to 48%
- Hennessey Creek direct load 0.3 to 3%

ED_004715A_00033022-00010

Sugar Creek Surface Water Impacts

Arsenic loads as percentage of total at YP-SR-2 during low and high flow

- Sugar Creek contributes 8 to 18% of total
- Upper sugar creek inflow 3 to 7%
- Bonanza Adit seep 0.01%
- West End Creek 2 to 2.5%
- Bailey Drainage Tunnel Seep 0.1 to 0.2%
- Inflows adjacent to NE Bradley Oxide Stockpile 1.7 to 6%

Sugar Creek Dissolved Arsenic loads kg/day

ED_004715A_00033022-00011

Early Action Objectives

- Early Actions that improve surface and ground water quality.
- "Shovel-ready" projects
- Can be completed during the 2020 work season
- Actions eliminated if
 - require mining-scale solutions,
 - appreciable additional field investigations,
 - major engineering in advance of construction,
 - high likelihood or consequence of failure
- Three early actions were identified that all focus on measures to reduce interaction of unimpacted, upgradient water with mineralized legacy waste materials contributing to metal loading in the EFSFSR.

Bradley Dumps and Hennessy Creek

- Patented and Unpatented Mining Claims
- Dumps composed ~4.5 MT of till and sulfide altered waste rock
- Hennessey Creek diverted above dumps
- Inflows through reach including pit and dumps account for 24 to 48% of arsenic load

Photo looking south along the EFSF from confluence with Sugar Creek

Photo of Hennessy Creek seeping from dump toe

ED_004715A_00033022-00013

Bradley Dumps and Hennessy Creek Existing Conditions

Significant volumes of water leak from the Hennessy Creek Diversion ditch through the Bradley Dumps

- Hennessy Creek flow measured above and below diversion ditch
- Average infiltration losses of 24%
- Annual infiltration losses of ~300 acre feet
- Annual precipitation on dumps of ~80 acre feet

Bradley Dumps and Hennessy Creek Proposed Early Action

Surface water diversion of Hennessy Creek

Meadow Creek Mill and Smelter Site Proposed Early Action

Surface water diversion

Defense Minerals Exploration Administration (DMEA) Adit and Waste Rock Dump Area

Existing Conditions

Un-patented Mining Claims

DMEA Adit and Waste Rock Dump

• Upstream water quality in DMEA creek exceeds WQ standards

• Significant suspended arsenic load below dumps

DMEA

spased Action Water Routes

DMEA Adit and Waste Rock Dump Area Proposed Early Action Creek Diversion around Waste Rock Dump

Creek at base of dump

Questions and Discussion

- Proposed Early Actions
 - Hennessy Creek Diversion
 - Diversion around Meadow Creek Mill and Smelter Complex
 - DMEA Adit and Dump Diversion